Inhalt

1. Einführung in die Klebetechnik ... 4
 1.1 Automobil Karosserierohbau ... 5
 1.2 Klebetechnik in der BIW-Produktion .. 6
 1.3 Was ist ein Falz? ... 7
 1.4 Warum wird ein Flansch gefalzt und verklebt? 8
 1.5 Herausforderungen in der Industrie .. 9
2. Einflussfaktoren .. 10
3. Prozessbeschreibung .. 14
 3.1 Layouts .. 15
 3.1.1 Manuell .. 16
 3.1.2 Automatisch – Ständer ... 17
 3.1.3 Automatisch – Roboter ... 18
 3.2 Typische Materialien und Systemparameter im Einsatz 19
 3.3 Falzmethoden ... 20
 3.3.1 Falze ... 21
 3.3.2 Rollfalze .. 22
 3.3.3 Pressfalze .. 23
 3.4 Weitere Produktionsschritte ... 24
4. Qualität .. 25
 4.1 Qualitätsvoraussetzungen... 25
 4.2 Qualitätsfragen .. 26
 4.2.1 Materialaustritte ... 26
 4.2.2 Mäander .. 27
 4.2.3 PVC-Blasen ... 29
 4.3 Verfahren zur Qualitätsüberwachung und -prüfung 29
 4.3.1 Sichtprüfung ... 30
 4.3.2 Zerstörende Prüfung ... 32
 4.3.3 Farbeindringprüfung ... 33
 4.3.4 Ultraschall ... 34
5. Atlas Copco – Ihr weltweiter Lösungsanbieter 35
1. Einführung in die Klebetechnik

Kleben ist ein Verfahren zum Verbinden von zwei Werkstoffen mit ähnlichen oder unterschiedlichen Eigenschaften unter Anwendung eines Klebematerials.

Abdichten ist ein Verfahren zum Schließen von Randbereichen zum Schutz vor ein- oder austretenden Gasen oder Flüssigkeiten, z. B. um Leckagen zu vermeiden.

Isolieren ist ein Verfahren, das Übertragung oder Durchgang von Wärme, Elektrizität und Schall verhindert oder vermindert.
1.1 Automobilkarosserierohbau

Im Karosseriebau (automobilier Rohbau, „BIW“ = body in white) werden Bleche zu einer Kfz-Karosserie verbunden. Der aufgetragene Klebstoff erfüllt verschiedene Funktionen, wie verbesserte Crash-Sicherheit, Fahrzeugsteifigkeit und Korrosionsbeständigkeit der Falzbereiche. Je nach Fügeaufgabe gibt es verschiedene Methoden, um die entsprechenden Anforderungen zu erfüllen.

In der BIW-Produktion sind typischerweise drei Applikationsbereiche zu finden:

1. Strukturkleben
2. Stützkleben
3. Falzkleben

Manchmal müssen auch Verbindungen im Bereich des Tankdeckels oder der Scheinwerfer abgedichtet werden.

Wo findet die Falzverklebung statt?

Die Herstellung der Anbauteile (Türen, Motorhaube, Kofferraum, Kotflügel) ist ein separater Prozessschritt innerhalb der BIW-Produktionslinie. Hier findet die Falzverklebung als eines der anspruchsvollsten Fügeverfahren innerhalb der BIW-Fertigung statt.
1.2 Klebetechnik in der BIW-Produktion

Strukturkleben

Stützkleben

Falzkleben

1.3 Was ist ein Falz?

1 Schachtelung: Die Innenplatte wird mit der Außenplatte, auf die bereits Klebstoff aufgetragen wurde, verschachtelt. Eine planparallele Verschachtelung sorgt für ein optimales Ergebnis.

2 Falzen: Mechanisches Formen mithilfe verschiedener Verfahren, die dem Falz seine endgültige Form geben.

3 Schlussfalz: Ein optimal gefüllter Falz ohne Lufteinschlüsse verhindert Korrosion.
1.4 Warum wird ein Flansch gefalzt und verklebt?

Falzteile verbergen die Schnittkanten der Metallbleche. Dies hilft sowohl Verletzungen vorzubeugen als auch das äußere Erscheinungsbild zu verbessern.

Der Klebstoff zwischen Innen- und Außenblech erfüllt eine strukturelle Funktion und vermeidet Korrosion. Mechanische Fügetechniken sowie Punktschweißen sind für die Fertigung von Falzverklebungen nicht geeignet, da sie unerwünschte sichtbare Stellen an den Fügestellen hinterlassen können. Deshalb spielt die Klebetechnik bei der BIW-Produktion aller Anbauteile eine äußerst wichtige Rolle.
1.5 Herausforderungen in der Industrie

Anbauteile erfordern ein hohes Maß an Qualität und damit einen optimalen Klebstoffauftrag. Die Falzverklebung ist einer der anspruchsvollsten Prozessschritte im Karosserierohbau.

Schon gewusst?

Falzverbindungen sind eines der anspruchsvollsten Fügeverfahren im automobilen Rohbau.

Automobilhersteller stehen vor Herausforderungen wie:

• Optimale Füllung im Falzbereich
• Vermeidung von Luftkanälen, die zu Korrosion führen
• Komplexe Geometrien der Bauteile
• Saubere Applikationsmuster mit scharfen Außenkanten
2. Einflussfaktoren

<table>
<thead>
<tr>
<th>Inneres Blech</th>
<th>Äußeres Blech</th>
<th>Applikation</th>
<th>Schachtelung</th>
<th>Falzen</th>
<th>Lackbereich</th>
<th>Transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicke</td>
<td>Geometrie</td>
<td>Volumen</td>
<td>Komponentenzuführung</td>
<td>Falzverfahren</td>
<td>KTL-Bad</td>
<td>Aushärten im Ofen</td>
</tr>
<tr>
<td>Beölung</td>
<td>Stanzkante</td>
<td>Positionierung</td>
<td>Bewegungen</td>
<td>Auf das Bauteil</td>
<td>Ofen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Raupenbreite</td>
<td>Endposition</td>
<td>wirkende Kraft</td>
<td>Nahtabdichtung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Füllrate</td>
<td></td>
<td>Plastizitätsverhalten des Materials</td>
<td>Spaltgröße</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abstand zum Bauteil</td>
<td></td>
<td>Ungleiche Querschnittsformen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Genauigkeit des Roboters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systemeinstellungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handhabungssteifigkeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viskosität</td>
<td>Temperatur</td>
<td>Viskosität</td>
<td>Komponentenzuführung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alterung</td>
<td>Luftblasen</td>
<td>Temperatur</td>
<td>Bewegungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verschmutzung</td>
<td>Füllmaterial</td>
<td>Alterung</td>
<td>Endposition</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aushärten im Ofen
Inneres und äußeres Blech:

Toleranzen der Dicke oder Geometrie, die durch den Stanz- und Schneidprozess entstehen, können die Qualität der Falzverklebung erheblich beeinflussen. Die Beölung der Bleche beeinflusst direkt die Haftung des Klebstoffes auf dem Blech. Laut Faustregel sollte ein Stahlblech eine maximale Beölung von 5 g/m² haben, um eine optimale Haftung zu gewährleisten. Aluminiumbleche sollten gereinigt werden, um eine maximale Beölung von 0,5 g/m² zu erreichen.

Applikation:

Volumen
Beschreibt die Menge innerhalb eines begrenzten dreidimensionalen Raumes, z. B. den Raum, den ein Stoff (fest, flüssig, gasförmig) oder eine Form einnimmt oder enthält. Das Volumen kann mit verschiedenen Formeln berechnet werden, abhängig von der Form eines Objektes oder Raumes.

Viskosität

Viskositätsbereich

Dünn/flüssig: 10-100 mPas
Hohe Viskosität bis pastös: > 15 000 mPas

Falzen: Verfahren, mit dem die endgültige Form des Falzes gebildet wird. Auf das Bauteil wirkt eine Kraft, welche die Verteilung des Klebstoffes im Falzbereich sowie die Form des Falzes selbst beeinflusst. Das Plastizitätsverhalten und die elastische Rückfederung der Bleche spielen eine entscheidende Rolle beim Erzielen der geforderten Qualität und müssen daher berücksichtigt werden. Weitere Informationen zu den verschiedenen Falzverfahren, die jeweils unterschiedliche Vor- und Nachteile bieten, sind in Kapitel 3.3 beschrieben.

Lackbereich: Nach dem Falzprozess kommen die Anbauteile in den Lackbereich. Hier erhalten sie eine KTL-Beschichtung und Nahtabdichtung, die wichtige Schutzanwendungen sind. Weitere Informationen finden Sie in unsere Broschüre zur Feinnahtabdichtung im Lackbereich.
3. Prozessbeschreibung

Um unterschiedlichen Anforderungen (z. B. Zykluszeit) gerecht zu werden, verwendet jeder Automobilhersteller eine andere Zellenkonfiguration für den Falzprozess. Ein typischer Prozess umfasst die folgenden Schritte:

- Positionierung des Außenteils
- Klebstoffauftrag (Falzklebstoff und Anti-Flatter)
- Schachtelung (Verbindung von Innen- und Außenteil)
- Falzen (Falze, Rollfalzen oder Pressfalzen)

Innerhalb der einzelnen Produktionsschritte stehen die Kunden vor verschiedenen Herausforderungen durch unterschiedliche Einflussfaktoren (beschrieben in Kapitel 2).

Nach dem Falzprozess kommen die Anbauteile in den Lackbereich, wo sie wichtige Schutzanwendungen erhalten.
3.1 Layouts

Jeder Automobilhersteller verwendet für den Falzprozess je nach Anforderungen und Platzverhältnissen ein anderes Layout. Grundsätzlich lassen sich drei verschiedene Layout-Typen unterscheiden:

1. Manuell
2. Automatisch – Ständer
3. Automatisch – Roboter

Ein manueller Auftrag wird typischerweise in Prototyp-Phasen oder in Kleinserien eingesetzt. Automatisierte Anwendungen werden für hochwertige und hochvolumige Anwendungen eingesetzt, bei denen es auf Wiederholgenauigkeit ankommt. Sowohl für Ständer- als auch für Robotieranlagen gibt es zwei verschiedene Möglichkeiten, die Dosiereinheit und den Applikator miteinander zu verbinden:

Auf Roboterflansch montierter Applikator:

Direkt am Dosierer montierter Applikator:

In der Regel ist das Falzwerkzeug in der Klebezelle enthalten. Nachdem das Material auf das Außenblech aufgetragen wurde, wird das Innenteil verschachtelt und anschließend gefalzt. Der Falz gibt dem Anbauteil sein endgültiges Aussehen.
3.1.1 Manuell

Es wird immer Anwendungen geben, bei denen eine Automatisierung keine Option ist. Mögliche Gründe für die Wahl manueller Lösungen sind bessere Zugangsmöglichkeiten, höhere Flexibilität und geringere Investitionskosten.

Der Systemaufbau einer manuellen Zelle besteht im Wesentlichen aus einer Materialversorgung, die direkt mit dem Applikator verbunden ist. Um die geforderte Qualität zu erreichen (z. B. Auftrag der erforderlichen Menge), muss der Bediener über umfangreiche Fachkenntnisse verfügen.

- Niedrige Erstinvestition
- Flexibles Systemlayout

- Qualitätsergebnis abhängig von den Fähigkeiten des Bedieners (Wiederholbarkeit)
- Höhere Zykluszeit
3.1.2 Automatisch – Ständer

Die Dosiereinheit zusammen mit dem Applikator auf einem Ständer anzubringen ist die bevorzugte Lösung, um Platz und Anschaffungskosten zu sparen.

Der Systemaufbau einer automatisierten Zelle besteht aus einem Materialversorgungssystem (im BIW typischerweise eine Doppelfasspumpe mit Pumpensteuerung), das an die Dosiereinheit angeschlossen ist. Zusätzlich ist diese an die Anlagensteuerung angeschlossen. Der Roboter ist mit einem Greifer ausgestattet, der das Bauteil unter dem Applikator auf dem Ständer bewegt.

- Geringere Anschaffungskosten (kein Applikationsbett)
- Greifer kann mehrere Aufgaben erfüllen
- Höhere Lebensdauer von Schläuchen und Kabeln (keine Bewegungen)

- Ungenauigkeit des Greifers
- Weniger präziser Auftrag
- Hohe Prozessschwankungen
- Einschränkungen der Plattengröße (Wiederholbarkeit und Genauigkeit)
3.1.3 Automatisch – Roboter

- Hohe Flexibilität bei der Plattengröße
- Sehr präziser Auftrag und hohe Wiederholgenauigkeit
- Mehr Stellfläche erforderlich
- Höhere Anschaffungskosten
- Höherer Verschleiß (z. B. Schläuche durch Bewegungen)
3.2 Typische Materialien und Systemparameter im Einsatz

Innerhalb des Falzprozesses finden wir eine breite Palette von Klebstoffen und die individuellen Systemparameter für den Auftrag im Einsatz.

Typischerweise werden für die Falzverklebung Epoxidmaterialien (mit oder ohne Glaskugeln), Materialien auf Kautschukbasis oder Zweikomponentenmaterialien verwendet.

Die Einstellung der richtigen Systemparameter ist von verschiedenen Faktoren wie Materialeinsatz, Zykluszeit oder Füllbedarf abhängig.

Schon gewusst?

Viele Materialien, die für die Falzverklebung verwendet werden, enthalten Glaskugeln. Sie halten den Abstand zwischen den gefalzten Metallteilen. Diese Füllstoffe können stark abrasiv sein. Die Materialversorgung sollte daher hohe Anforderungen an Leistung und Haltbarkeit erfüllen.

Typische Materialien im Einsatz (mit/ohne Glaskugeln)

- Epoxid
- Auf Kautschukbasis
- 2 Komponenten

Parameter

- Robotergeschwindigkeit: 250-400 mm/s
- Materialfluss: 3-10 ccm/s
- Materialtemperatur: 30-60 °C
- Druck: 25-80 bar
- Gesamtvolumen: 10-30 ccm
- Auftragszeit: 10-35 s

Quelle: Echtzeit-Systemparameter von verschiedenen Kunden weltweit erfasst
3.3 Falzmethoden

Automobilhersteller fordern eine äußerst zuverlässige Prozessgestaltung für den Formprozess.

Wir haben bereits erfahren, dass die Falzverklebung einer der anspruchsvollsten Schritte im automobilen Rohbau ist.

3.3.1 Falze

Hersteller entscheiden sich bei mittleren bis hohen Produktionsvolumina für Falze, die eine Zykluszeit von nur 15 Sekunden ermöglichen.

Die zwei Phasen des Prozesses

- Hub oder Druck
- Tisch fährt in die jeweilige Position

Vor-Falzen

- Niedrige Zykluszeit
- Einfache Bedienung

Schlussfalzen

- Schwierig zu ändern
 (individuelles Werkzeug für jedes Teil)
3.3.2 Rollfalze

- Flexible Bewegungen und Kraftverteilung
- Sehr präzise

- Programmieraufwand (Roboter- und Verfahrens-expertise notwendig)
- Zykluszeit
3.3.3 Pressfalze

Da die Zykluszeiten auf wenige Sekunden reduziert werden können, hat sich das Pressfalzen in der Automobilindustrie bei hohen Stückzahlen bewährt. Darüber hinaus sind einige Pressen in der Lage, verschiedene Teile in einem Arbeitsgang zu verarbeiten.

Der Prozess ist denkbar einfach: Die Innen- und Außenteile werden in das Presswerkzeug eingelegt.

Die Presse fährt nach unten bringt die Bleche in die gewünschte Form und der Falz ist fertig. Einige Systemaufbauten bieten die Möglichkeit einer Variantenfertigung durch den Einsatz mehrerer Pressstationen für verschiedene Fahrzeugmodelle. Der Vorteil hierbei ist, dass die Auftragssysteme für den Falzklebstoff und den Flatterschutz für mehrere Modelle eingesetzt werden können.

- Schneller Prozess
- Variantenfertigung
- Weniger Ausrüstung erforderlich
- Austausch der Werkzeuge für verschiedene Teile (wenn nur eine Presse verwendet wird)
- Schwierig zu kontrollierende Kräfte
3.4 Weitere Produktionsschritte

Nachdem die Karosserie ihre Struktur erhalten hat und die Anbauteile in der BIW-Montagestation montiert wurden, geht es in den Lackbereich. Wie in Kapitel 2 beschrieben, kann die KTL-Beschichtung einen Einfluss auf die Qualität der Falzverklebung haben. Wenn der Klebstoff nicht richtig aufgetragen wurde, kann das KTL-Bad den Klebstoff aus dem Falz auswaschen.

Nachdem die Karosserie den Ofen verlassen hat, erhält sie einige Schutzapplikationen. An den Anbauteilen sind kosmetische Feinnahtapplikationen unerlässlich, um zusätzlich gegen das Eindringen von Feuchtigkeit zu schützen. Darüber hinaus bietet diese Anwendung ein ansprechendes Endergebnis.
4. Qualität

„In der Fertigung steht dies für ein Maß für Exzellenz bzw. frei von Fehlern, Mängeln und signifikanten Abweichungen. Qualität entsteht durch die strikte und konsequente Einhaltung bestimmter Standards, die die Einheitlichkeit eines Produktes zur Erfüllung spezifischer Kunden- oder Nutzeranforderungen gewährleisten. Die Norm ISO 8402-1986 definiert Qualität als „die Gesamtheit der Merkmale und Eigenschaften eines Produkts oder einer Dienstleistung, die festgelegte oder implizierte Bedürfnisse erfüllen kann.“ Wenn ein Automobilhersteller einen Defekt in einem seiner Fahrzeuge findet und einen Produktrückruf startet, sinkt die Zuverlässigkeit für Kunden und damit die Produktion, weil das Vertrauen in die Qualität des Fahrzeugs verloren geht.‖¹

4.1 Qualitätsvoraussetzungen

Bei Atlas Copco werden die höchsten Qualitätsstandards angewand, die in der Fertigungsindustrie zu finden sind.

A. 100%ige Verklebung
B. X%ige Verklebung zwischen Kontaktflächen von „Außen- und Innenteil“
C. Vollständig mit Klebstoff gefüllt
D. Sichtbarer Klebstoff entweicht nach innen

¹ Quelle: http://www.businessdictionary.com/definition/quality.html
4.2 Qualitätsfragen

Da der Gesamtprozess des Falzens von Teilen einer der anspruchsvollsten Produktionsschritte im automobilen Rohbau ist, stehen die Automobilhersteller vor mehreren Qualitätsfragen.

Nur wenige dieser Fragen lassen sich direkt auf den Klebstoffauftrag zurückführen. Sie resultieren aus verschiedenen Einflussfaktoren (beschrieben in Kapitel 2) vor, während und nach der Applikation, die zu unterschiedlichen Auswirkungen führen.

Kompetenz

Um die genaue Ursache für mögliche Qualitätsprobleme zu ermitteln, muss der gesamte Falzprozess analysiert werden. Wie in Kapitel 2 beschrieben, kann die Qualität des Schlussfalzes von vielen verschiedenen Faktoren beeinflusst werden, angefangen beim Stanzen bis hin zum Lackieren. Daher erfordert es ein hohes Maß an Kompetenz und Verständnis in diesem Gesamtprozess, um die Ursache zu ermitteln und zu beseitigen.

4.2.1 Materialaustritte

Die direkte Folge von Materialaustritten ist zunächst der Aufwand für Nacharbeit. Wird das entwichene Material nicht entfernt, kann dies nicht nur zu einer Verunreinigung der Falzwerkzeuge, sondern auch des KTL-Bades führen, was weitere Probleme verursachen kann. Wenn das gefalzte Teil den Lackbereich erreicht, kann das ausgetretene Material zu Problemen bei der Feinnahtabdichtung führen.
Die Hauptursachen sind überwiegend zurückzuführen auf:

2. Ungenau Roboter programmierung (Raupenposition): Ist die Raupe nicht in der gewünschten Position, kann dies erhebliche Auswirkungen auf die Materialverteilung im Falz haben. Dies kann auch dann zu Materialaustritten führen, wenn der Spalt im Falzbereich nicht den Anforderungen entsprechend gefüllt wird.

3. Der Falzprozess: Jedes Falzverfahren bietet seine individuellen Vor- und Nachteile wie in Kapitel 3.3 beschrieben.

4.2.2 Mäander

Dieses Phänomen beschreibt ein Muster, das in der Natur zu finden ist. Ein Mäander beschreibt eine Flussform, die zusätzliche Schleifen aufweist und ein gewundenes Muster bildet. Dieses Muster findet sich auch bei der Falzverklebung, jedoch nur, wenn das Teil nach dem Aushärten geöffnet wird (siehe Kapitel 4.3.2.: Zerstörende Prüfung).
Mögliche Gründe für Mäander innerhalb einer ausgehärteten Falzverklebung:

Rückfedern von Blechen: Nach dem Falzen verbleiben die beiden Bleche nicht in ihrer Falzposition. Durch ihr elastisches Verhalten neigen sie dazu, sich leicht auseinander zu bewegen, was zu einer ungleichmäßigen Materialverteilung im Falz führen kann.

Nicht genug Material aufgetragen: Ein Mäander kann durch eine unzureichende Füllung des Falzes verursacht werden.

Teile werden zu stark zusammengedrückt: Wie in Kapitel 3.3 beschrieben, bringt jedes Falzverfahren Vor- und Nachteile mit sich. Die während des Falzvorgangs auftretende Kraft kann in einigen Bereichen zu einer Verschiebung des Materials führen.

4.2.3 PVC-Blasen

4.3 Verfahren zur Qualitätsüberwachung und -prüfung

Je nach Qualitätsstandard werden Qualitätsprüfungen in unterschiedlichen Zeiträumen durchgeführt. Dies kann bedeuten, dass eine Prüfung pro Schicht, pro Tag, pro Woche oder sogar pro Monat oder weniger durchgeführt wird.

Jedes Prüfverfahren bietet Vorteile, ist aber auch in einigen Bereichen eingeschränkt.
4.3.1 Sichtprüfung

Das einfachste Verfahren zur Beurteilung einer Falzverklebung ist die Sichtprüfung. Sie erfolgt manuell und ist die subjektive Beurteilung des Prüfers. Es können sichtbare Mängel ab einer bestimmten Größe erkannt werden.

Ohne Kamera

Die Nachteile dieser Testverfahren sind:

1. Bedienerabhängig:
Abhängig von der Kompetenzstufe, den persönlichen Voraussetzungen oder anderen Faktoren kann die Sichtprüfung durch und einen Prüfer gelegentlich abweichen. Ebenso unterscheidet sich die Sichtprüfung von Prüfer zu Prüfer.

Mit Kamera

Eine typische Sichtprüfung stellt sicher, dass die Raupen...

- **Raupenbreite**
 - ×
 - ✓
 - ×
 - ...die korrekte Geometrie und Breite aufweisen

- **Raupenkontinuität**
 - ×
 - ✓
 - ...durchgehend aufgetragen werden

- **Raupenposition**
 - ×
 - ✓
 - ×
 - ...korrekt positioniert werden

Aber auch dieses Testverfahren kommt an seine Grenzen. Das System kann nur Live-Daten mit einer angegebenen Referenz vergleichen. Wenn die Installation oder Programmierung bereits fehlerhaft war, kann das System den Fehler nicht erkennen.
4.3.2 Zerstörende Prüfung

Die zerstörende Prüfung hat jedoch den Nachteil, dass das Verfahren recht kostspielig ist, da das Teil entsorgt werden muss.

Da die Prüfung erst nach der KTL-Beschichtung erfolgt, sind zeitnahe Korrekturen nicht möglich. Das bedeutet, dass möglicherweise viele fehlerhafte Teile hergestellt werden, bis ein möglicher Fehler bei der Prüfung erkannt wird. Auch die Rückführung in die Produktion nimmt einige Zeit in Anspruch, bis die Fehlerursache erkannt und beseitigt ist.

Zudem besteht eine Verletzungsgefahr, da die Metallteile scharfkantig sind und die Öffnung manuell erfolgen muss.

Quelle: Volkswagen Sachsen GmbH
4.3.3 Farbeindringprüfung

Typischerweise wird die Farbeindringprüfung begleitend zur zerstörenden Prüfung durchgeführt. Mit dieser Methode können selbst sehr kleine Fehlstellen erkannt werden.

Die Nachteile der Farbeindringprüfung sind die gleichen wie bei der zerstörenden Prüfung. Hinzu kommt ein zusätzlicher Zeitaufwand für die Farbpipettierung und -verteilung.
4.3.4 Ultraschall

Für die Falzverklebung bietet der Ultraschall die Möglichkeit, die Klebstoffverteilung im Falzbereich zu prüfen, um Bereiche ohne Klebstoff ohne Zerstörung des Bauteils zu erkennen. Der Prüfkopf wird manuell um den Falzbereich bewegt und das System gibt eine visuelle Rückmeldung über die Füllung. Dies gibt Aufschluss darüber, wo Unterbrechungen der Raupen oder Fehlstellen zu finden sind und somit die Möglichkeit der gezielten Rückverfolgung von Schwachstellen innerhalb des Applikationsvorgangs.

Der Nachteil dieser Prüfmethode ist zum einen die Abhängigkeit vom Bediener. Eine Dosierung der Koppelmittel ist unerlässlich, um ein einwandfreies Testergebnis zu erzielen. Zudem muss der Prüfkopf präzise bewegt werden und der Prozess ist zeitaufwändig.

Die Technologie ist in der Branche noch nicht etabliert, bietet aber ein großes Potenzial für die zerstörungsfreie Qualitätsprüfung.
5. Atlas Copco – Ihr weltweiter Lösungsanbieter

Um die Einflussfaktoren unterschiedlicher Fügeprobleme korrekt analysieren und bewerten zu können, ist ein profundes Know-how und eine umfassende Erfahrung in den Kundenprozessen unerlässlich.

Wokshops

Innovationszentren

Unsere Fügetechnologien

- Kleben, Dichten, Dämmen
- Stanznieten
- Fließlochschrauben
Weltweites Innovationsnetzwerk

Wir übertragen unser aufgebautes Fachwissen auf alle weltweit tätigen Innovationszentren, um unsere Kunden vor Ort mit Fachwissen und Erfahrung zu unterstützen. Darüber hinaus bieten wir einen globalen Austausch aller Innovationszentren, um Sie bestmöglich zu unterstützen.

![World Network Diagram](image)

Unsere Testlabore

Innovative Produktlösungen

Bei der Falzverklebung ist der Auftrag einer Raupe eine der gängigsten Auftragsarten. Aber auch die Swirl-Applikation findet in der Branche immer mehr Beachtung, da sie eine hervorragende Materialverteilung und ein zuverlässigeres Prozessfenster bietet.

z. B. E-Swirl 2 AdX BIW von Atlas Copco; Produktlinie SCA

Ein Applikator, drei verschiedene Einstellungen: Der E-Swirl 2 AdX BIW kann sowohl mit Raupen als auch mit festem und anpassbarem Swirl-Auftrag für komplexe Fahrzeuggeometrien eingesetzt werden.
Wofür wir stehen

Weltweites Netzwerk
Wir sind immer in Ihrer Nähe.

Kompetenz
Profitieren Sie von unserer Erfahrung in Prozessen und Anwendungen

Lösungsanbieter
Wir bieten maßgeschneiderte Lösungen für Ihre individuellen Anforderungen

Möchten Sie mehr über unsere Fügetechnologien erfahren und wie wir Ihnen helfen können, Qualität und Produktivität in Ihrer Fertigung zu steigern?

Kontaktieren Sie uns
sca.info@atlasconca.com
Wir bringen nachhaltige Produktivität

Wir stehen zu unserer Verantwortung gegenüber unseren Kunden, unserer Umwelt und unseren Mitmenschen. Wir setzen auf verlässliche Beziehungen und erstellen Lösungen, die sich dauerhaft bewähren. Das nennen wir nachhaltige Produktivität.