

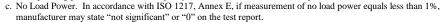
COMPRESSOR DATA SHEET

In Accordance with Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

		ATA - FOR COMPRESS	ED AIR
1	Manufacturer: Atlas Copco	ſ	
	Model Number: GA11VSD+-175	Date:	11/30/2020
2	X Air-cooled Water-cooled	d Type:	Screw
		# of Stages:	1
3	Full Load Operating Pressure ^b	102	psig ^b
4	Drive Motor Nominal Rating	15	hp
5	Drive Motor Nominal Efficiency	94.3	percent
6	Fan Motor Nominal Rating (if applicable	e) 0.3	hp
7	Fan Motor Nominal Efficiency	73	percent
	Input Power (kW)	Capacity (acfm) ^{a,d}	Specific Power (kW/100 acfm) ^d
	13.5	Max 68.9	19.6
0*	9.6	51.9	18.5
8*	9.0	49.4	18.2
	5.7	29.9	19.1
	4.2	20.8	20.2
		Min 15.5	21.9
9*	Total Package Input Power at Zero Flow		kW
10	Isentropic Effeciency	71.22	%
11		25.0	50.0 75.0
	Note: Y-Axis Scale	Capacity (ACFM) s only a visual representation of the data in S , 10 to 35, + 5kW100acfm increments if necess xis Scale, 0 to 25% over maximum capacity	

*For models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administrator.


d. Tolerance is specified in ISO 1217, Annex E, as shown in table below:

Consult CAGI website for a list of participants in the third party verification program:

NOTES: Member

- a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions.
 - b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data sheet.

www.cagi.org

ROT 030.1

NOTE: The terms "power" and "energy" are synonymous for purposes of this document.

ias Institute	Volume Flow Rate at specified conditions		Volume Flow Rate	Specific Energy Consumption	No Load / Zero Flow Power
	m ³ / min	<u>ft3 / min</u>	%	%	
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
	Above 15	Above 529.7	+/- 4	+/- 5	
form was developed	by the Compressed Air and (Gas Institute for the use of its member	s participating in the PVP, CAGI has n	ot independently verified the reported of	lata.

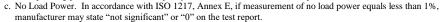
12/19 Rev 3 This fo

COMPRESSOR DATA SHEET

In Accordance with Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1Manufacturer:Atlas Copco2Model Number:GA11VSD+-175Date:11/30/22 \overline{X} Air-cooledWater-cooledType:Scree# of Stages:113Full Load Operating Pressureb138psig4Drive Motor Nominal Rating15hp5Drive Motor Nominal Rating (if applicable)0.3hp6Fan Motor Nominal Efficiency73perce6Fan Motor Nominal Efficiency73perce7Fan Motor Nominal Efficiency73perce8*Input Power (kW)Capacity (acfm) ^{ad} Specific Power (k10.548.521.48*8.639.022.16.929.323.35.320.126.49*Total Package Input Power at Zero Flow ^{c, d} 0.010Isentropic Effeciency69.749*Total Package Input Power at Zero Flow ^{c, d} 0.010isentropic Effeciency20.010.415.015.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Image: Constraint of the second se	
3 Full Load Operating Pressure ^b 138 psig 4 Drive Motor Nominal Rating 15 hp 5 Drive Motor Nominal Efficiency 94.3 perce 6 Fan Motor Nominal Rating (if applicable) 0.3 hp 7 Fan Motor Nominal Efficiency 73 perce 6 Input Power (kW) Capacity (acfm) ^{ad} Specific Power (k 8* 12.7 Max 57.7 22.0 10.5 48.5 21.0 8* 8.6 39.0 22.1 6.9 29.3 23.3 23.4 9* Total Package Input Power at Zero Flow ^{c.d} 0.0 kW 10 Isentropic Effeciency 69.74 % 11 14 25.0 25.0 25.0	W
$ \frac{4}{11} $ Drive Motor Nominal Rating 15 hp 5 Drive Motor Nominal Efficiency 94.3 perce 6 Fan Motor Nominal Efficiency 73 hp 7 Fan Motor Nominal Efficiency 73 perce 7 Fan Motor Nominal Efficiency 73 perce 1 nput Power (kW) Capacity (acfm) ^{a,d} Specific Power (k 12.7 Max 57.7 22.0 10.5 48.5 11.0 8* 8.6 39.0 22.1 6.9 29.3 23.5 5.3 20.1 26.4 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Effeciency 69.74 %	
5 Drive Motor Nominal Efficiency 94.3 perce 6 Fan Motor Nominal Rating (if applicable) 0.3 hp 7 Fan Motor Nominal Efficiency 73 perce 7 Fan Motor Nominal Efficiency 73 perce 8# Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (k 8* 10.5 48.5 21.0 6.9 29.3 23.3 23.5 5.3 20.1 26.4 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Effeciency 69.74 % 11 X 25.0 25.0 25.0	b
6 Fan Motor Nominal Rating (if applicable) 0.3 hp 7 Fan Motor Nominal Efficiency 73 perce Input Power (kW) Capacity (acfm) ^{a.d} Specific Power (k 8* 12.7 Max 57.7 22.0 10.5 48.5 21.1 6.9 22.3 6.9 29.3 23.3 23.5 5.3 20.1 26.6 4.3 Min 14.8 29.1 9.4 9.74 % 10 Isentropic Effeciency 69.74 % 69.74 %	
7 Fan Motor Nominal Efficiency 73 perce Input Power (kW) Capacity (acfm) ^{a.d} Specific Power (k 12.7 Max 57.7 22.0 10.5 48.5 21.1 6.9 29.3 23.1 6.9 29.3 23.1 5.3 20.1 26.6 9* Total Package Input Power at Zero Flow ^{c.d} 0.0 10 Isentropic Effeciency 69.74 %	ent
$8* \frac{12.7 \text{ Max} 57.7 22.0}{10.5 \text{ 48.5} 21.0}{6.9 29.3 23.2}{5.3 20.1 26.4}{5.3 20.1 26.4}{10.5 48.5 21.0}{6.9 29.3 23.5}{5.3 20.1 26.4}{6.9 29.3 20.1}{6.9 29.1}$	
$8^{*} = \frac{12.7 \text{ Max} 57.7 22.0}{10.5 48.5 21.0}$ $8^{*} = \frac{12.7 \text{ Max} 57.7 22.0}{10.5 48.5 21.0}$ $8.6 39.0 22.1 6.9 29.3 23.5$ $5.3 20.1 26.4 3.5 20.1 26.4 3.5 29$	ent
10.5 48.5 21.0 8.6 39.0 22.1 6.9 29.3 23.5 5.3 20.1 26.4 4.3 Min 14.8 29.1 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Effeciency 69.74 %	$(W/100 \text{ acfm})^d$
8* 8.6 39.0 22.1 6.9 29.3 23.5 5.3 20.1 26.4 4.3 Min 14.8 29.1 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Effeciency 69.74 % 11 35.0 30.0 25.0 40.0	0
8.6 39.0 22.1 6.9 29.3 23.5 5.3 20.1 26.4 4.3 Min 14.8 29.1 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Effeciency 69.74 % 11 35.0 25.0 25.0 25.0 11 30.0 25.0 20.0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 20.0 10	6
5.3 20.1 26.4 4.3 Min 14.8 29.1 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Effeciency 69.74 % 30.0 30.0 30.0 30.0 4.0 11 10 </td <td>1</td>	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5
9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Effeciency 69.74 % 10 Isentropic Effeciency 69.74 % 11 11 11 11 11	4
10 Isentropic Effeciency 69.74 % 11 35.0 30.0<	1
11 25.0 30.0 30.0 30.0 25.0 20.0 20.0	
30.0 30.0 25.0 20.0 20.0 20.0	
11 25.0 25.0 (MARINE CLEAN) 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	
11 25.0 20.0 20.0 20.0 20.0	
11	
11	
11	
15.0	
10.0 25.0 50.0	75.0
Capacity (ACFM)	
Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35	


d. Tolerance is specified in ISO 1217, Annex E, as shown in table below:

Consult CAGI website for a list of participants in the third party verification program:

NOTES: Member

- Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions.
 - b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data sheet.

www.cagi.org

ROT 030.1

NOTE: The terms "power" and "energy" are synonymous for purposes of this document.

s Institute	Volume Flow Rate at specified conditions		Volume Flow Rate	Specific Energy Consumption	No Load / Zero Flow Power
	$\underline{m}^3 / \underline{min}$	<u>ft3 / min</u>	%	%	
	Below 0.5	Below 17.6	+/- 7	+/- 8	
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%
	1.5 to 15	53 to 529.7	+/- 5	+/- 6	
	Above 15	Above 529.7	+/- 4	+/- 5	
orm was developed	by the Compressed Air and (Gas Institute for the use of its member	s participating in the PVP_CAGI has n	ot independently verified the reported d	ata

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data

COMPRESSOR DATA SHEET

In Accordance with Federal Uniform Test Method for Certain Lubricated Air Compressors

Rotary Compressor: Variable Frequency Drive

1	Manufacturer:	Atlas Copco			
	Model Number:	GA11VSD+-175	Date:	11/30/2020	
2	X Air-cooled	Water-cooled	Туре:	Screw	
			# of Stages:	1	
3	Full Load Operatin	g Pressure ^b	181	psig ^b	
4	Drive Motor Nomi	nal Rating	15	hp	
5	Drive Motor Nomi	nal Efficiency	94.3	percent	
6	Fan Motor Nomina	al Rating (if applicable)	0.3	hp	
7	Fan Motor Nomina	al Efficiency	73	percent	
	Input Power (kW)		Capacity (acfm) ^{a,d}	Specific Power (kW/100 acfm) ^d	
	12.9	Max	49.8	25.9	
	12.4		47.7	26.0	
8*	10.3		37.9	27.2	
	8.4		28.6	29.4	
	6.4		19.7	32.5	
	5.7 Min		16.1	35.4	
9*	Total Package Input Power at Zero Flow ^{c, d}		0.0	kW	
10	Isentropic Effecien	су	64.42	%	
11	2 Specific Power (KW/100 ACFM) 5	40.0 35.0 30.0 25.0 20.0 20.0			
		Note: Graph is only a vi Note: Y-Axis Scale, 10 to 35,	25.0 Capacity (ACFM) isual representation of the data in Sectio + 5kW/100acfm increments if necessary a 0 to 25% over maximum capacity		75.0

NOTES: Member

ROT 030.1

- a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions.
 - b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data sheet.
 - c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report.

d. Tolerance is specified in ISO 1217, Annex E, as shown in table below:

NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy Compressed Air & Gas Institute No Load / Zero Flow Power Volume Flow Rate at specified conditions Consumption ft3 / min m³/min % % Below 17.6 Below 0.5 +/- 7 +/- 8 17.6 to 53 +/- 7 +/- 10% 0.5 to 1.5 +/- 6 53 to 529.7 1.5 to 15 +/- 5 +/- 6 Above 529.7 +/- 5 Above 15 +/- 4

12/19 Rev 3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data