

COMPRESSOR DATA SHEET

In Accordance with Federal Uniform Test Method for Certain **Lubricated Air Compressors**

Rotary Compressor: Fixed Speed

MODEL DATA - FOR COMPRESSED AIR								
1	Manufacturer:	Atlas Copco						
	Model Number:	G7-116TM	Date:	2/10/2023				
2	X Air-cooled	0 Water-cooled	Type:	Screw				
			# of Stages:	1				
3*	Rated Capacity at Full Load	36	acfm ^{a,e}					
4	Full Load Operating Pressure	109	psig b					
5	Maximum Full Flow Operating Pressure c		116	psig				
6	Drive Motor Nominal Rating		10	hp				
7	Drive Motor Nominal Efficiency		90.2	percent				
8	Fan Motor Nominal Rating (if applicable)		n/a	hp				
9	Fan Motor Nominal Efficiency		n/a	percent				
10*	Total Package Input Power at Zero Flow		2.65	kW ^e				
11	Total Package Input Power a Load Operating Pressure ^d	t Rated Capacity and Full	8.72	kW^d				
12*	Specific Package Input Power at Rated Capacity and Full Load Operating Pressure		24.2	kW/100 cfm ^e				
13	Isentropic Efficiency		57.56	Percent				

^{*}For models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administrator. Consult CAGI website for a list of participants in the third party verification program: www.cagi.org

NOTES:

a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex C; ACFM is actual cubic feet per minute at inlet conditions.

Member

for this data sheet. c. Maximum pressure attainable at full flow, usually the unload pressure setting for load/no load control or the

b. The operating pressure at which the Capacity (Item 3) and Electrical Consumption (Item 11) were measured

- maximum pressure attainable before capacity control begins. May require additional power.
- d. Total package input power at other than reported operating points will vary with control strategy.
- e. Tolerance is specified in ISO 1217, Annex C, as shown in table below:

NOTE: The terms "power" and "energy" are synonymous for purposes of this document.

First in the first									
	Volume Flow Rate at specified conditions		Volume Flow Rate	Specific Energy Consumption	No Load / Zero Flow Power				
	$\underline{\mathbf{m}}^3 / \underline{\mathbf{min}}$	<u>ft3 / min</u>	%	%					
	Below 0.5	Below 17.6	+/- 7	+/- 8					
	0.5 to 1.5	17.6 to 53	+/- 6	+/- 7	+/- 10%				
	1.5 to 15	53 to 529.7	+/- 5	+/- 6					
	Above 15	Above 520 7	<u></u>	⊥/ 5					

ROT 030.1

This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.