

Case Study - Hybrid

Success Story - Hybrid power for Daytona race RV's parking lot

The Problem

Heavily varying load with 24/7 power, especially between day/night

Highest load demand is at night when people are trying to sleep... and generators are noisy

The Solution

ZBC 250-575 + QAS 410

Fuel cost considered (\$/gal)	\$5
DEF cost considered (\$/gal)	\$2
Service cost considered (\$/service)	\$2,600

Operational Cost Efficiency

	Units	DG Only	Hybrid	Savings
Running Time	h	456	67	389
Fuel	gal	3,648 Gal	778 Gal	2,870
Fuel Cost	USD	\$18,240	\$3,890	\$14,350
CO ₂	Ibs/CO ₂	81,861	17,458	64,402
Estimated Lifetime Genset	years	1.6	10.9	9.3

Key Takeaways

Generator only running 4 hours per day – charge during the day, battery only at night!

Almost one full maintenance saved... reduce service intervals by over 80%

Reduce risk of service calls due to low load issues – only run generator at efficient point!