10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

Everything you need to know about your pneumatic conveying process

Discover how you can create a more efficient pneumatic conveying process.
3D images of blowers in cement plant
Close

Problems with compressed air condensation

Air Treatment Drying Condensate in compressed air Contaminants in Compressed Air

Have you ever noticed or heard anyone complain about air compressor moisture or water leaking in air compressor lines?

Such occurrences are very common, but they should not be ignored and left unattended, as it could harm your compressed air system and jeopardize the quality of your end product.

Let’s take a look at what causes water in air compressor lines and how to treat it properly to avoid any potential risks. 

Why is there water in air compressor lines?

Water condensation is a natural occurrence and a byproduct of compressing air. The amount of water produced by an air compressor is largely dependent on the inlet condition, the quality of ambient air in a given environment, as well as pressure. In simpler terms, air temperature, humidity, compressor size and required pressure will determine the water content coming out of the unit and potentially into the compressed air piping. Naturally, hot and humid air has a higher moisture content than cold air, it will result in high air compressor moisture. For example, a 55kW (75HP) rotary screw air compressor which operates in 24 °C (75 F) ambient temperature with 75% relative humidity will produce 280 liters (75 gallons) of water per day. Below, the process of moisture removal within a compressed air system is illustrated. 

This water can be separated using accessories, including aftercoolers, condensation separators, refrigerant dryers and adsorption dryers

A compressor working with 7 bar(e) overpressure compresses air to 7/8 of its volume. This also reduces the air's ability to hold water vapor by 7/8.

The quantity of water released is considerable. The following example further illustrates this point. A 100kW compressor drawing in air at 20 °C and 60% relative humidity gives off around 85 liters of water over 8 hours. Consequently, the amount of water that will be separated depends on the application area of the compressed air. These factors determine which combination of coolers and dryers are suitable.

To further explain compressed air moisture, let's evaluate ambient temperature, flow rate (size of compressor), inlet pressure, inlet temperature, and pressure dew point (PDP).

To further explain this, let’s take a look at how parameters such as ambient temperature, flow rate (size of compressor), inlet pressure, inlet temperature and desired pressure dew point (PDP) affect the drying process and potential air compressor moisture content in the compressed air system.

Selection Parameters

Flow Rate or Compressor Size For applications that require higher flow rates (CFM or l/s) will result in greater air compressor moisture. Ambient Temperature / Humidity Content Compressors that operate in higher ambient temperature and humid environment will end up producing larger amounts of water in air compressor lines. Inlet Temperature If the inlet temperature going into a dryer is higher, more water content will be present in the compressed air, therefore needing a bigger dryer to treat the air and condense the water out. Pressure Unlike flow, temperature or humidity, the pressure works opposite, as higher the pressure, the less water the compressed air contains and easier it is to dry. If you take a sponge filled with water into consideration, the harder you squeeze the sponge, the less water it will contain. Pressure Dew Point (PDP) Pressure dew point is a common way to measure the water content in compressed air. PDP refers to the temperature point where air or gas is saturated with water and begins the process of condensation or turning into a liquid state. This can also be explained as the point at which air is not able to hold any more water vapor. In order to minimize water content in our compressed air, a lower PDP level is required, while higher PDP values refer to greater amounts of water vapor in the system. The size of the dryer will determine PDP and levels of condensation in compressed air.

The selection parameters in the different stages of air compression.

How is water in air compressor lines harmful?

Excessive moisture in compressed air can have damaging effects on the facility and jeopardize the effectiveness of operations. Untreated condensation in compressed air can damage and cause problems to pneumatic systems, air motors, valves, as well as any components or machines connected to the system and possibly contaminate the process or manufacturing of the end product. Here is a list that further explains the adverse effects of moisture:

  • Corrosion of piping system and equipment (ie. CNC and other manufacturing machines)
  • Damaging of pneumatic controls which can result in expensive shutdowns
  • Rusting and increased wear for production equipment due to washing away of lubricant
  • Quality issues due to risk of discoloration, lowered quality and adherence of paint
  • In cold weather operations, freezing can occur, causing damage to control lines
  • Causes excessive maintenance to the air compressor and shortens life of equipment

Furthermore, water in air compressor lines can have many damaging effects on plant air, instrument air, valves and cylinders, as well as air powered tools. In order to avoid excessive and unnecessary maintenance costs and potential production shutdown, it is recommended to be proactive and properly implement the necessary steps to keep the compressed air dry, clean and suitable for any given process and or application.

How to treat air compressor moisture?

Selecting the proper drying method for compressed air largely depends on the specific requirements needed to meet quality control standards for your application.

One of the first steps to remove compressed air moisture inside the compressor. This is important as a moisture separator or aftercooler is capable of removing 40-60% of vaporized water.

After the compressed air leaves the aftercooler it remains saturated with water and can have damaging effects on the overall system if left untreated.

Since an air compressor's tank is much cooler than incoming hot compressed air, utilizing an air receiver can aid in reducing water content. It is important to keep in mind that a wet tank collects excess moisture, and needs to be drained daily. This is important to avoid corrosion and wear.

If your application calls for further moisture removal, it's necessary to introduce an external or internal (integrated) dryer. Depending on the desired dew point, the two dryer options are refrigerated and desiccant air dryers

With a refrigerated air dryer, the air temperature is lowered to three degrees Celsius (37 degrees Fahrenheit). This process causes water vapor to condensate out of compressed air. If a refrigerated dryer's dew point is not sufficient, a desiccant air dryer should be used.

A desiccant dryer reduces the dew point to at least -40 degrees Celsuis, resulting in bone dry air. Such levels are essential for spray-painting operations, printing, and other pneumatic tool applications.

Selecting the proper drying method for compressed air is largely dependent on the specific requirements that need to be met in order not to compromise the process and end product. One of the first steps of removing moisture out of compressed air occurs inside of the compressor, as the moisture separator or aftercooler is capable of getting rid of 40-60% of vaporized water.

Once the compressed air leaves the aftercooler it remains saturated with water and can have damaging effects on the overall system if left untreated. Utilizing an air receiver can also aid in reducing water content in compressed air, as the tank’s ambient temperature is much cooler than the hot compressed air coming out of the air compressor. It is important to keep in mind that a wet tank will collect excess air compressor moisture and therefore will need to be drained daily to avoid corrosion and excessive wear.

If the application calls for further moisture removal, the need to introduce an external or internal (integrated) dryer is necessary. Depending on the desired dew point, the two dryer options are refrigerated and desiccant air dryers. In a refrigerated air dryer, the air temperature is lowered to three degrees Celsius (37 degrees Fahrenheit), causing vapor water to condensate out of the compressed air at that temperature. If refrigerated dryer dew point is not sufficient, a desiccant bead air dryer should be used to accomplish the desired result. In a desiccant dryer, the dew point is lowered to -40 degrees Celsius/Fahrenheit, resulting in bone dry air that is critical in spray painting operations, printing and other pneumatic tool uses.

Related articles