Our solutions
Atlas Copco Rental
Solutions
Uthyrningspark
Atlas Copco Rental
Kvävgasgeneratorer
Uthyrningspark
Oljefria luftkompressorer
Uthyrningspark
Oljefria luftkompressorer
Oljefria luftkompressorer
Oljesmorda luftkompressorer
Uthyrningspark
Oljesmorda luftkompressorer
Oljesmorda luftkompressorer
Tillbehör
Betjänade branscher
Atlas Copco Rental
Betjänade branscher
Betjänade branscher
Betjänade branscher
Industriverktyg och monteringssystem
Solutions
Produkter
Industriverktyg och monteringssystem
Monteringsverktyg och -lösningar
Produkter
Monteringsverktyg och -lösningar
Monteringsverktyg och -lösningar
Monteringsverktyg och -lösningar
Monteringsverktyg och -lösningar
Monteringsverktyg och -lösningar
Monteringsverktyg och -lösningar
Monteringsverktyg och -lösningar
Monteringsverktyg och -lösningar
Monteringsverktyg och -lösningar
Verktyg för materialavverkning
Produkter
Verktyg för materialavverkning
Verktyg för materialavverkning
Verktyg för materialavverkning
Verktyg för materialavverkning
Verktyg för materialavverkning
Verktyg för materialavverkning
Verktyg för materialavverkning
Verktyg för materialavverkning
Verktyg för materialavverkning
Luftledningstillbehör
Produkter
Luftledningstillbehör
Luftledningstillbehör
Luftledningstillbehör
Borrar och avancerade borraggregat
Produkter
Borrar och avancerade borraggregat
Borrar och avancerade borraggregat
Industriverktyg och monteringssystem
Kompressorteknik
Solutions
Produkter
Kompressorteknik
Process Gas and Air Equipment
Sortiment för industriella kondensatbehandlinglösningar
Produkter
Sortiment för industriella kondensatbehandlinglösningar
Sortiment för industriella kondensatbehandlinglösningar
Sortiment för industriella kondensatbehandlinglösningar
Sortiment för industriella kondensatbehandlinglösningar
Service och reservdelar
Kompressorteknik
Luftkompressordelar
Maximera effektiviteten
Service och reservdelar
Maximera effektiviteten
Maximera effektiviteten
Kompressorteknik

Extraction for Fault Identification in Rotary Machines under Machine-Learning

Functional area: Tightening technique, Mechatronics Department, R&D

Recruiting Managers: Roodabeh Afrasiabi
Email: roodabeh.afrasiabi@atlascopco.com (please observe that we cannot accept applications via this e-mail. Please apply via the link below)

Target

Accurate fault diagnostics in rotary machines is generally approached by developing a physical model of faults and understanding the relationship between faults and measurable signals captured by a variety of sensors. Classical fault identification and classification models employ analytical, signal processing and statistical-based features of the sensor signals combined with suitable classifiers. These feature-classifier combinations are engineered by incorporating expert-based knowledge about characteristic signatures related to faults. The engineered-features have shown success for fault diagnostic in mechanical systems that exhibit similar signal characteristic, however the fault-specific nature of these features limits their performance for general signal monitoring. The goal of this thesis is to investigate and compare the performance of automatic feature extraction through unsupervised learning instead of feature-engineering.

Background

The Tightening Technique group is currently supporting the Data Driven Services in the project “Predictive maintenance”. The student will contribute to the data analysis conducted by the team. The students will also use a graphical machine learning software and investigate its potential for feature learning.

Mission

The performance of the proposed feature extraction model will be validated on sensor data collected from an experimental test-rig specifically designed to study characteristics of bearing and gearbox related faults. Feature learning on raw vibration signal possibly will extract vibration-features that can improve fault identification performance of subsequent classifier. Consequently, instead of feature-extraction, the feature-learning approach will be utilized to capture domain specific failure features. The feature-learning approach alleviates dependence on prior knowledge of the problem and proves beneficial in tasks where it is challenging to develop characteristic features”.

Relevant educational background

Level of thesis project

Qualification

This topic requires programming experience in Python, R or Matlab, as well as knowledge of machine learning methods and a strong interest in applying these techniques on real-world data.

Additional information

Our office is located in Sickla, Stockholm.

As this is a project position for studies and not an employment, it does not qualify for seeking a work permit. We can therefore only accept applications from students who are either attending Swedish universities (i.e. already have a student visa) or, if they are attending universities abroad, are EU-citizens.

How to apply

The selection process will be ongoing so if you are interested in the position, don’t hesitate to apply!

Apply here

Company presentation

Great ideas accelerate innovation. At Atlas Copco Industrial Technique we team up with our customers to turn industrial ideas into smart manufacturing assembly solutions and innovative industrial tools. Our passionate people, expertise and service bring sustainable value to industries everywhere. Atlas Copco is based in Stockholm, Sweden with customers in more than 180 countries and about 37 000 employees. Revenues of BSEK 95/ 9 BEUR in 2018. For more information: www.atlascopcogroup.com

Careers