Our solutions
Atlas Copco Rental
Solutions
Betjänade branscher
Atlas Copco Rental
Betjänade branscher
Betjänade branscher
Betjänade branscher
Resources
Atlas Copco Rental
Resources
Industriverktyg och monteringssystem
Solutions
Industrier
Industriverktyg och monteringssystem
Flygindustri
Industrier
Flygindustri
Flygindustri
Flygindustri
Flygindustri
Flygindustri
Tung utrustning och maskiner
Industrier
Produkter
Industriverktyg och monteringssystem
Bearbetande verktyg
Produkter
Bearbetande verktyg
Bearbetande verktyg
Bearbetande verktyg
Bearbetande verktyg
Bearbetande verktyg
Bearbetande verktyg
Bearbetande verktyg
Bearbetande verktyg
Tryckluftstillbehör
Service
Industriverktyg och monteringssystem
Atlas Copcos servicelösningar
Service
Atlas Copcos servicelösningar
Atlas Copcos servicelösningar
Atlas Copcos servicelösningar
Industriverktyg och monteringssystem
Industriverktyg och monteringssystem
Kompressorteknik
Solutions
Reservdelar och service
Kompressorteknik
Kompressorteknik
Kraftutrustning
Solutions
Produkter
Kraftutrustning
Lätt anläggnings- och rivningsutrustning
Produkter
Lätt anläggnings- och rivningsutrustning
Lätt anläggnings- och rivningsutrustning
Lätt anläggnings- och rivningsutrustning
Lätt anläggnings- och rivningsutrustning
Lätt anläggnings- och rivningsutrustning
Lätt anläggnings- och rivningsutrustning
Lätt anläggnings- och rivningsutrustning
Lätt anläggnings- och rivningsutrustning
Lätt anläggnings- och rivningsutrustning

Deploying Machine Learning models in Handheld tightening tools

APPLICATION CLOSED
Functional area: Data Driven Services, R&D, Atlas Copco Industrial Technique AB

Target

The goal of this thesis is to investigate the possibilities to deploy cloud-based machine learning models in Atlas Copco’s tightening tools. Areas to investigate will be requirements on the target platform and efficient ways to deploy and keep the tool updated.

Background

Data Driven Services is currently designing a new cloud-based service for our Service Division. An essential part of the new service is analytics of production data. For various reasons it might be interesting to be able to deploy some of the cloud-based machine-learning models in the tool.

Mission

Your mission in this project will be to:

  • Investigate the existing tool hardware/software platform for an SXB-tool and determine/estimate how much capacity there is available for Machine Learning purposes. Also identify key areas (hardware or software related) to improve ML capacity.
  • Find ways to integrate machine learning models in the tool platform.
  • Investigate ways to deploy and keep machine learning models up to date.
  • Deploy an existing machine learning model for trace analytics on an actual Tightening tool (SXB).

This project will be considered a success when the technical investigation is performed and the Trace Analytics Machine Learning model is implemented in the SXB tool, with an efficient way to upgrade the model with new versions from the Cloud.

Relevant educational background

  • Electrical engineering
  • IT/Computer science
  • Other: Machine Learning

Level of thesis project

  • Master thesis

Qualification

You need to have interest and knowledge in embedded SW development, Machine Learning and basic computer hardware.
Some key competences:

  • Linux
  • C/C++
  • Python
  • Embedded SW development
  • Machine Learning

Additional information

Our office is located in Sickla, Stockholm.

As this is a project position for studies and not an employment, it does not qualify for seeking a work permit. We can therefore only accept applications from students who are either attending Swedish universities (i.e. already have a student visa) or, if they are attending universities abroad, are EU-citizens.

Company presentation

Great ideas accelerate innovation. At Atlas Copco Industrial Technique we team up with our customers to turn industrial ideas into smart manufacturing assembly solutions and innovative industrial tools. Our passionate people, expertise and service bring sustainable value to industries everywhere. Atlas Copco is based in Stockholm, Sweden with customers in more than 180 countries and about 37 000 employees. Revenues of BSEK 95/ 9 BEUR in 2018. For more information: www.atlascopcogroup.com

Careers