Our solutions
Atlas Copco Rental
Solutions
Flota de alquiler
Atlas Copco Rental
Accesorios
Compresores de aire exentos de aceite
Flota de alquiler
Compresores de aire exentos de aceite
Compresores de aire exentos de aceite
Compresores de aire lubricados con aceite
Flota de alquiler
Compresores de aire lubricados con aceite
Compresores de aire lubricados con aceite
Generadores de nitrógeno
Flota de alquiler
Compressors
Solutions
Productos
Compressors
equipos de aire y gas de proceso
Gama de soluciones industriales de tratamiento de condensados
Productos
Gama de soluciones industriales de tratamiento de condensados
Gama de soluciones industriales de tratamiento de condensados
Gama de soluciones industriales de tratamiento de condensados
Gama de soluciones industriales de tratamiento de condensados
Servicio y recambios
Compressors
Maximice la eficiencia
Servicio y recambios
Maximice la eficiencia
Maximice la eficiencia
Repuestos para compresores de aire
Servicio y recambios
Repuestos para compresores de aire
Repuestos para compresores de aire
Repuestos para compresores de aire
Repuestos para compresores de aire
Repuestos para compresores de aire
Servicios postventa globales para turbomaquinaria
Servicio y recambios
Herramientas y Soluciones Industriales
Solutions
Herramientas y Soluciones Industriales

Tecnología de generación de nitrógeno con adsorción por cambio de presión (PSA)

Industrial Gases Compressed Air Wiki Nitrogen

La posibilidad de crear su propio nitrógeno implica tener controlado el suministro de N2. Esto podría ser beneficioso para muchas empresas que necesitan nitrógeno a diario. ¿Qué significa esto para su empresa? Cuando el nitrógeno se genera internamente, no tiene que depender de terceros para el suministro, de modo que se elimina la necesidad de procesamiento, recargas y gastos de envío. Una forma de generar nitrógeno es a través de la adsorción por cambio de presión.

¿Cómo funciona la adsorción por cambio de presión?

Para producir su propio nitrógeno, es importante conocer y comprender el nivel de pureza que quiere alcanzar. Algunas aplicaciones, tales como el inflado de neumáticos y la prevención de incendios, requieren bajos niveles de pureza (entre el 90 % y el 99 %) mientras que otras, como las aplicaciones en las industrias de alimentación y bebidas o el moldeado de plástico, requieren niveles elevados (del 97 % al 99,999 %). En estos casos, la tecnología PSA es el método ideal y más sencillo.

En esencia, un generador de nitrógeno funciona separando las moléculas de nitrógeno de las de oxígeno presentes en el aire comprimido. La adsorción por cambio de presión atrapa el oxígeno de la corriente de aire comprimido mediante la adsorción. La adsorción tiene lugar cuando las moléculas se unen a un adsorbente; en este caso, las moléculas de oxígeno se adhieren a un tamiz molecular de carbono (CMS). Esto sucede en dos depósitos a presión, cada uno lleno con un CMS, que alternan entre el proceso de separación y el proceso de regeneración. Por el momento, vamos a llamarlos torre A y torre B.

En primer lugar, el aire comprimido limpio y seco entra en la torre A y, como las moléculas de oxígeno son más pequeñas que las de nitrógeno, se introducen por los poros del tamiz de carbono. Por otro lado, como las moléculas de nitrógeno no caben por los poros, evitarán el tamiz molecular de carbono. Como resultado, se obtiene el nitrógeno de la pureza deseada. Esta fase se denomina fase de adsorción o de separación.

Pero el proceso no se detiene aquí. La mayoría del nitrógeno producido en la torre A sale del sistema (listo para uso directo o almacenamiento), mientras que una pequeña porción del nitrógeno generado fluye hacia la torre B en el sentido opuesto (de arriba abajo). Este flujo es necesario para expulsar el oxígeno capturado en la anterior fase de adsorción de la torre B. Al liberar la presión de la torre B, los tamices moleculares de carbono pierden su capacidad para retener las moléculas de oxígeno, que se separarán de los tamices y serán arrastradas a través del escape por el pequeño flujo de nitrógeno procedente de la torre A. De esta forma, el sistema deja espacio para que nuevas moléculas de oxígeno se unan a los tamices en una próxima fase de adsorción. A este proceso de "limpieza" lo llamamos "regeneración de torre saturada de oxígeno".

Gráfico que muestra el proceso de generación de nitrógeno. En primer lugar, el depósito A se encuentra en la fase de adsorción mientras que el depósito B se regenera. En la segunda etapa, ambos recipientes igualan la presión, después de lo cual el depósito A empieza a regenerarse mientras que el depósito B genera nitrógeno.

En primer lugar, el depósito A se encuentra en la fase de adsorción mientras que el depósito B se regenera. En la segunda etapa, ambos recipientes igualan la presión para prepararse para el cambio. Después del cambio, el depósito A empieza a regenerarse mientras que el depósito B genera nitrógeno.

En este punto, se igualará la presión en ambas torres y cambiarán las etapas de adsorción a regeneración y viceversa. El CMS de la torre A se saturará, mientras que la torre B, debido a la despresurización, podrá reiniciar el proceso de adsorción. Este proceso también se conoce como "cambio de presión", lo que significa que se permite que ciertos gases se capturen a mayor presión y se liberen a menor presión. El sistema PSA de las dos torres permite la producción continua de nitrógeno con el nivel de pureza deseado.

Pureza del nitrógeno y requisitos para el aire de admisión

Es importante comprender el nivel de pureza que se necesita para cada aplicación para así generar deliberadamente su propio nitrógeno. No obstante, hay algunos requisitos generales en relación con el aire de admisión. El aire comprimido tiene que estar limpio y seco antes de entrar en el generador de nitrógeno, ya que esto repercute positivamente en la calidad del nitrógeno y también evita que el CMS resulte dañado por la humedad. Además, la presión y la temperatura de entrada deben estar controladas: se debe mantener la temperatura entre 10 y 25 grados centígrados, y la presión entre 4 y 13 bares. Para tratar el aire correctamente, debe haber un secador entre el compresor y el generador. Si el aire de admisión se genera mediante un compresor lubricado por aceite, también hay que instalar un filtro de carbón y coalescente de aceite para deshacerse de las impurezas antes de que el aire comprimido llegue al generador de nitrógeno. Hay sensores de presión, temperatura y punto de rocío a presión instalados en la mayoría de los generadores como medida de seguridad para impedir que el aire contaminado entre en el sistema PSA y dañe sus componentes.


Una instalación típica: compresor de aire, secador, filtros, depósito de aire, generador de nitrógeno, depósito de nitrógeno. El nitrógeno se puede consumir directamente del generador o a través de un depósito adicional (no se muestra).

Otro aspecto importante en la generación de nitrógeno PSA es el factor de aire. Es uno de los parámetros más importantes en un sistema generador de nitrógeno, ya que define el aire comprimido necesario para obtener un determinado flujo de nitrógeno. El factor de aire, por tanto, indica la eficiencia de un generador, de modo que un factor de aire inferior indica una mayor eficiencia y, por supuesto, menores costes globales de funcionamiento.

Elegir entre un generador PSA y uno de membrana

 

PSA

MEMBRANA

PUREZA QUE PUEDE ALCANZARSE

EFICIENCIA HASTA EL 99,999 %

EFICIENCIA HASTA EL 99,9%

EFICIENCIA

MAYOR

ALTA

RENDIMIENTO FRENTE A TEMP.

MENOR A ALTA TEMP.

MAYOR A ALTA TEMP.

COMPLEJIDAD DE LOS SISTEMAS

MEDIA

BAJA

INTENSIDAD DEL SERVICIO

BAJA

MUY BAJA

ESTABILIDAD DE PRESIÓN

FLUCTUACIÓN DE ENTRADA/SALIDA

ESTABLE

ESTABILIDAD DE FLUJO

FLUCTUACIÓN DE ENTRADA/SALIDA

ESTABLE

VELOCIDAD DE PUESTA EN MARCHA

MINUTOS/HORAS

SEGUNDOS

SENSIBILIDAD DEL AGUA (VAPOR)

PRP MAX. 8 °C

SIN AGUA LÍQUIDA

SENSIBILIDAD AL ACEITE

NO PERMITIDO (< 0,01 mg/m³)

NO PERMITIDO (< 0,01 mg/m³)

NIVEL SONORO

ALTO (picos de venteo)

MUY BAJA

PESO

MEDIA

BAJA

Artículos relacionados