10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

Everything you need to know about your pneumatic conveying process

Discover how you can create a more efficient pneumatic conveying process.
3D images of blowers in cement plant
Close

How does a screw air compressor work?

Technology explained
Atlas Copco screw air compressor

What is screw air compressor technology?

Here we will look a bit closer at the screw air compressor technology. What is a screw compressor and what is its basic working principle?

The screw element was first developed in 1930s, it has a male and female rotors, the male rotor drives the female rotor if it’s an oil injected screw compressor technology; and a timing gear drive both rotors in the oil free compressor technology as both rotors will run harmonically with minimum calculated clearance between both elements. The basic principle of a screw compressor is as the male and female rotors are rotating in opposite direction they draw air in between them. As the air progresses along the rotors the air is compressed as the volume space between the rotors decreases, hence creating compressed air that is displace to the outlet. The speed of the rotors is optimised at a certain level to minimise mechanical loses (due to heat at very high speed) and volumetric losses (air losses due to very low speed).

Unlike a piston compressor a screw compressor generally doesn’t have valves and has no mechanical force that causes unbalance, this means that it can work at a high speed combined with large flow rates and still be contained within a small exterior.

A good example of a screw compressor that can produce large volumes of compressed air and with a small footprint is Atlas Copco’s GAVSD+ air compressors up to 75kW.

Learn more about screw air compressor on our website or you could simply call or email us to learn more about compressed air technologies or to get the right sized screw compressor for your business

Rotary screw Egypt

How does a screw air compressor work?

explainer icon