10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

10 steps to a green and more efficient production

Carbon reduction for green production - all you need to know
10 steps to green compressed air production

Everything you need to know about your pneumatic conveying process

Discover how you can create a more efficient pneumatic conveying process.
3D images of blowers in cement plant
Close

Način rada PSA generatora azota

Atlas Copco NGP+ generator azota pruža sve prednosti PSA tehnologije u kompaktnom, pouzdanom i efikasnom rešenju odmah spremnom za rad

25.10.2023.

Kako radi PSA generator

Procenjeno vreme čitanja: 5 minuta

PSA Nitrogen Generator
Vazduh koji udišemo je oko 78% sačinjen od azota, ali azot koji je veće čistoće ima mnogo više praktičnih i industrijskih aplikacija. Azot se stvara razdvajanjem molekula azota iz drugih molekula, u čistom, suvom toku komprimovanog vazduha, pa se dobija prečićšćena količina azota. Za određene namene, kao što je naduvavanje guma, potrebna je relativno niža čistoća (između 90% i 97%). Druge namene, kao što je proizvodnja hrane i pića, kao i obrađivanje plastike, zahtevaju veću čistoću (od 97% do 99.999%).

While higher purity levels are used in industries like food processing, for lower purity needs, often generating nitrogen using membrane technology is preferred. This method uses selective permeation to separate nitrogen from other gases.  

Diversifying your knowledge on these methods ensures you're well-equipped to choose the best nitrogen generation solution for your specific needs. Learn more about membrane nitrogen technology to see its benefits and uses.  

Pogledajte ovaj video da saznate više o azotu

PSA (Pressure Swing Adsorption - Adsorpcija promene pritiska)

One method for generating nitrogen is Pressure Swing Adsorption (PSA). Adsorption is the process where atoms, ions, or molecules from a substance, like compressed air, adhere to the surface of an adsorbent.

A PSA nitrogen generator isolates nitrogen. The other gasses in the compressed air stream (oxygen, CO2, and water vapor) are adsorbed, leaving behind purified nitrogen. This equipment is a simple, reliable, cost-effective approach to nitrogen generation. It enables continuous, high-capacity nitrogen flow at desired purity levels.

Two tower system

PSA traps oxygen from the compressed air stream when molecules bind themselves to a carbon molecular sieve. This happens in two separate pressure vessels (tower A and tower B). Each of these is filled with a carbon molecular sieve that switches between a separation and regeneration process.

Clean, dry compressed air enters tower A. Since oxygen molecules are smaller than nitrogen molecules, they pass through the pores of the sieve. Nitrogen molecules cannot fit through the pores so they bypass the sieve. This results in nitrogen of desired purity. It is called the adsorption or separation phase.

Most of the nitrogen produced in tower A exits the system ready for direct use or storage. Next, a small portion of generated nitrogen flows into tower B in the opposite direction. This flow pushes out the oxygen that was captured in the previous adsorption phase by tower B.

By releasing the pressure in tower B, the carbon molecular sieves lose their ability to hold the oxygen molecules. These detach from the sieves and get carried away by the small nitrogen flow coming from tower A.

This "cleaning" process makes room for new oxygen molecules to attach to the sieves in the next adsorption phase. The two-tower PSA system switches between separation and regeneration to provide continuous nitrogen production at a desired purity level.

Jedna od tehnologija za dobijanje azota se naziva PSA. Adsorpcija je proces u kome atomi, joni ili molekuli neke supstance (u ovom slučaju komprimovanog vazduha) prijanjaju za površinu adsorbenta. PSA  generator azota izoluje azot i druge gasove iz struje komprimovanog vazduha (kiseonik, CO2 i vodenu paru), ostavljajući potpuno čist azot. Tehnologija koju koristi PSA generator azota je prosta, pouzdana i efikasna u smislu troškova, a omogućava izolovanje toka azota velikog kapaciteta željenog nivoa čistoće. PSA odvaja kiseonik iz struje komprimovanog vazduha tako što se molekuli vezuju za ugljenično molekularno sito. To se odigrava u dva odvojena rezervoara pod pritiskom (toranj A i toranj B), oba napunjena ugljeničnim molekularnim sitom, koja naizmenično vrše proces separacije i proces regeneracije. U toranj A ulazi čist i suv komprimovan vazduh.

Pošto su molekuli kiseonika manji od molekula azota, oni prolaze kroz pore sita. Molekuli azota ne mogu da prođu kroz pore, tako da zaobilaze sito čime se dobija azot željene čistoće. Ova faza se naziva faza adsorpcije ili separacije. Većina azota proizvedenog u tornju A izlazi iz sistema, spremna za direktnu upotrebu ili skladištenje. Zatim, mali deo dobijenog azota se uliva u toranj B u suprotnom smeru. Ovaj tok istiskuje kiseonik koji je zarobljen u prethodnoj fazi adsorpcije tornja B. Otpuštanjem pritiska u tornju B, ugljenikova molekularna sita gube sposobnost da zadrže molekule kiseonika, koji se odvajaju od sita i bivaju odnešeni malom strujom azota koji dolazi iz tornja A. Ovaj proces „čišćenja" stvara prostor za nove molekule kiseonika da se vežu za sita u sledećoj fazi adsorpcije. PSA sistem sa dva tornja se prebacuje između separacije i regeneracije kako bi obezbedio kontinuiranu proizvodnju azota na željenom nivou čistoće. Atlas Copco NGP+ generator azotnog gasa pruža sve prednosti PSA tehnologije u kompaktnom, pouzdanom i efikasnom  rešenju odmah spremnom za primenu.

PSA samostalno proizvodi azot

Kompanije koje proizvode sopstveni azot samostalno povećavaju fleksibilnost proizvodnje tako što obezbeđuju da imaju azot koji im je potreban, na nivou čistoće koji im je potreban, kada im je potreban. Generišite azot u svom postrojenju i nema brige da će ga ponestati jer ne postoji dobavljač sa strane. Ovo eliminiše stalnu obradu porudžbina, dopune i troškove isporuke. Takođe oslobađa prostor koji je inače potreban za skladištenje boca sa azotom (i punih i praznih).

Konsultujte stručnjaka za vazdušne sisteme o najboljem rešenue za samostalnu proizvodnju azota.

Povezani članci i projekti

Air compressors Serbia vazdušni kompresori Nitrogen and oxygen generation systems Compressor Technique

Način rada PSA generatora azota

explainer icon