Our solutions
Industrial Tools & Solutions
Solutions
제품
Industrial Tools & Solutions
전력 장비
Solutions
제품
전력 장비
에너지 저장 시스템
아트라스콥코 렌탈
Solutions
압축기
Solutions
제품
압축기
제품 및 솔루션
Solutions
에너지 저장 시스템

Regulating Displacement Compressors

Compressors Compressed Air Wiki Compressor Regulation and Control Compressor Regulation

In a lot of cases, applications require constant pressure in the compressed air system. This, in turn, requires that the compressed air flow from the compressor center is regulated. We will discuss the different flow regulation principles for displacement compressors.

How are displacement compressors regulated? - The 9 regulation principles:

pressure relief

Schematic of pressure relief principle for regulating displacement compressors
The original method for regulating compressors was to use a pressure relief valve to release excess air pressure into the atmosphere. The valve in its simplest design can be spring-loaded, whereby the spring tension determines the final pressure. Frequently a servo-valve controlled by a regulator is used instead. The pressure can then be easily controlled and the valve can also act as an off-loading valve when starting a compressor under pressure. Pressure relief creates a significant energy requirement, as the compressor must work continuously against full counterpressure. A variant, which is used on smaller compressors, is to unload the compressor by fully opening the valve so that the compressor works against atmospheric pressure. Power consumption is significantly lower using this variant method.

bypass

Schematic of pressure relief principle for regulating displacement compressors
Bypass regulation serves the same function as pressure relief, in principle. The difference lies in the fact that the pressure relieved air is cooled and returned to the compressor's inlet. This method is often used on process compressors where the gas is unsuitable or too valuable to be released into the atmosphere.

throttling the inlet

Schematic of pressure relief principle for regulating displacement compressors
Throttling is a simple method to reduce flow by increasing the pressure ratio across the compressor, according to the induced under-pressure in the inlet. This method is, however, limited to a small regulation range. Liquid-injected compressors, which can overcome such a high pressure ratio, can be regulated down to 10% of maximum capacity. The throttling method creates a relatively high energy requirement, due to the high pressure ratio.

pressure relief with throttled inlet

Schematic of pressure relief principle for regulating displacement compressors
This is the most common regulation method currently in use. It combines a maximum regulation range (0-100%) with low energy consumption: only 15–30% of full load power with an off-loaded compressor (zero flow). The inlet valve is closed, but with a small opening used at the same time a blow-off valve opens and releases the discharge air from the compressor. The compressor element therefore works with a vacuum in the inlet and low counterpressure. It is important that pressure relief be carried out quickly and that the released air volume is limited, in order to avoid unnecessary losses during the transition from loaded to unloaded. The system demands a system buffer volume (air receiver), the size of which is determined by the desired difference between loading and off-loading pressure limits and by the permitted number of unloading cycles per hour.

Start/stop

Schematic of pressure relief principle for regulating displacement compressors
Compressors below 5–10 kW are often controlled by completely stopping the electric motor when the pressure reaches an upper limit value and by restarting it when the pressure drops below the lower limit value. This method demands a large system buffer volume or large pressure difference between the upper and lower limits, in order to minimize the heat load on the electric motor. This is an energy-efficient and effective regulation method, provided the number of starts is kept low.

speed regulation

Schematic of pressure relief principle for regulating displacement compressors
A combustion engine, gas turbine or frequency controlled electric motor controls the compressor's speed and, consequently, the flow rate. It is an efficient method for maintaining a steady outgoing pressure and lower energy consumption. The regulation range varies with the type of compressor and is largest for liquid-injected compressors. Frequently, speed regulation is combined with start-stop at low degrees of loading and pressure relief at standstill.

Related articles

an illustration about regulation and control for the atlas copco wiki.

공기 흐름 조절

다양한 방식으로 압축공기를 처리할 수 있으며 이러한 공정에 사용되는 다양한 공구가 있습니다. 여기서는 압축공기 흐름을 조절하는 과정에 대해 자세히 알아보십시오.

an illustration about regulation and control for the atlas copco wiki.

Regulating Dynamic Compressors

There are different ways we can treat compressed air and different tools that are used in these processes. Learn more about regulating compressed air flow in dynamic compressors.

how to install a compressor?

압축기 설치

과거에 비해 압축기 시스템 설치가 더 쉬워졌습니다. 설치 시 고려해야 하는 몇 가지 요소들 중 가장 중요한 것은 압축기 배치 위치와 압축기 주변 공간을 구성하는 방법입니다. 여기에서 자세히 알아보십시오.

Check out our wide range of reliable, energy-efficient and cost-effective air compressors. For all your low, medium and high pressure applications.