只要 10 個步驟,就能達成更環保、更有效率的生產

環保生產之碳減量 - 您需要知道的一切
環保壓縮空氣生產的 10 個步驟

只要 10 個步驟,就能達成更環保、更有效率的生產

環保生產之碳減量 - 您需要知道的一切
環保壓縮空氣生產的 10 個步驟

只要 10 個步驟,就能達成更環保、更有效率的生產

環保生產之碳減量 - 您需要知道的一切
環保壓縮空氣生產的 10 個步驟

只要 10 個步驟,就能達成更環保、更有效率的生產

環保生產之碳減量 - 您需要知道的一切
環保壓縮空氣生產的 10 個步驟

只要 10 個步驟,就能達成更環保、更有效率的生產

環保生產之碳減量 - 您需要知道的一切
環保壓縮空氣生產的 10 個步驟

只要 10 個步驟,就能達成更環保、更有效率的生產

環保生產之碳減量 - 您需要知道的一切
環保壓縮空氣生產的 10 個步驟

只要 10 個步驟,就能達成更環保、更有效率的生產

環保生產之碳減量 - 您需要知道的一切
環保壓縮空氣生產的 10 個步驟

只要 10 個步驟,就能達成更環保、更有效率的生產

環保生產之碳減量 - 您需要知道的一切
環保壓縮空氣生產的 10 個步驟

只要 10 個步驟,就能達成更環保、更有效率的生產

環保生產之碳減量 - 您需要知道的一切
環保壓縮空氣生產的 10 個步驟

只要 10 個步驟,就能達成更環保、更有效率的生產

環保生產之碳減量 - 您需要知道的一切
環保壓縮空氣生產的 10 個步驟

使用空壓機控制系統最佳化您的裝置

我們最新的中央控制器 Optimizer 4.0 能穩定系統並減少能源成本。
空壓機 optimizer 4.0

使用空壓機控制系統最佳化您的裝置

我們最新的中央控制器 Optimizer 4.0 能穩定系統並減少能源成本。
空壓機 optimizer 4.0

使用空壓機控制系統最佳化您的裝置

我們最新的中央控制器 Optimizer 4.0 能穩定系統並減少能源成本。
空壓機 optimizer 4.0

使用空壓機控制系統最佳化您的裝置

我們最新的中央控制器 Optimizer 4.0 能穩定系統並減少能源成本。
空壓機 optimizer 4.0

使用空壓機控制系統最佳化您的裝置

我們最新的中央控制器 Optimizer 4.0 能穩定系統並減少能源成本。
空壓機 optimizer 4.0

您所需要了解的所有氣動輸送流程相關資訊

探索您如何能建立更有效率的氣動輸送流程。
3D images of blowers in cement plant
Close

Guide to Dynamic Compressor Types: Centrifugal and Axial

Compressor Types Air compressors Compressed Air Wiki Other Compressors

Go to topic⤸

When you need a lot of horsepower, a dynamic compressor is the ideal choice. They are available in both axial and radial designs, and frequently called turbocompressors. Those with radial design are called centrifugal compressors.

A dynamic compressor works at a constant pressure, unlike, for example, a displacement compressor, which works with a constant flow. The performance of a dynamic compressor is affected by external conditions. For example, a change in the inlet temperature results in a change in the capacity.

What are centrifugal compressors?

graphic showing a centrifugal compressor

A centrifugal compressor is characterized by its radial discharge flow. Air is drawn into the center of a rotating impeller with radial blades. It is pushed out towards the perimeter of the impeller by centrifugal forces. The radial movement of the air results simultaneously in a pressure rise and a generation of kinetic energy. Before air is led to the center of the impeller of the next compressor stage, it passes through a diffuser and a volute. This is where kinetic energy is converted into pressure.

Each stage takes up a part of the overall pressure rise of the compressor unit. In industrial machinery, the maximum pressure ratio of a centrifugal compressor stage is often not more than 3. Higher pressure ratios reduce stage efficiency. Multi-stage applications allow the possibility of inter-cooling to reduce the power requirement. Multiple stages can be arranged in series on a single, low-speed shaft. This concept is often used in the oil and gas or process industry.

Since the pressure ratio per stage is low, a large number of stages and/or multiple compressor sets are used to achieve the desired pressure. For air compression applications, a high speed gearbox is integrated with the compressor stages to rotate the impellers on high speed pinions. The impeller can have either an open or closed design.

Open design

Most commonly used for high speed air applications are open design impellers. With this, the impeller is normally made of special stainless steel alloy or aluminum. The impeller shaft speed is very high compared to that of other types of compressor. Speeds of 15,000-100,000 rpm are common. This means that journaling on the high speed compressor shaft or pinion takes place using plain oil-film bearings instead of roller bearings.

Oil-free

Alternatively, air film bearings or active magnetic bearings can be used for a completely oil-free machine. Two impellers are mounted on each end of the same shaft to counteract the axial loads caused by the pressure differences. Typically, 2 or 3 stages with intercoolers are used for standard compressed air applications.

In a modern configuration of the centrifugal air compressor, ultra-high speed electric motors are used to drive the impellers directly. This technology creates a compact compressor without a gearbox and associated oil-lubrication system, thereby making it a completely oil-free compressor design.

Seals

Each centrifugal compressor must be sealed in a suitable manner to reduce leakage along the shaft where it passes through the compressor housing. Many types of seals are used and the most advanced can be found on high-speed compressors intended for high pressures. The most common types are labyrinth seals, ring seals or controlled gap seals, (usually graphite seals) and mechanical seals.

What is an axial dynamic compressor?

an axial compressor is a type of dynamic compressor

An axial compressor has axial flow, whereby the air or gas passes along the compressor shaft through rows of rotating and stationary blades. In this way, the velocity of air is gradually increased at the same time stationary blades convert the kinetic energy to pressure. A balancing drum is usually built into the compressor to counterbalance axial thrust.

Axial compressors are generally smaller and lighter than their equivalent centrifugal compressors and normally operate at higher speeds. They are used for constant and high volume flow rates at a relatively moderate pressure, for instance, in ventilation systems. Given their high rotational speed, they are ideally coupled to gas turbines for electricity generation and aircraft propulsion.

Back to top 

Related articles

Check out our wide range of reliable, energy-efficient and cost-effective air compressors. For all your low, medium and high pressure applications.