Visit The Compressed Air Blog!

Are you looking to learn more about the compressed air industry? Do you have pressing questions about compressed air and gas systems?
The Compressed Air Blog illustration

Beer, Beer, and More Beer!

From compressors to nitrogen generators to blowers, we've got the ideal suite of products that help your brewery brew the perfect pint at the lowest cost of ownership.
Beer Pouring Hero Image Breweries

Service in the USA

Explore our wide variety of service options, ranging from service plans and parts plans to piping and installation, system design, and air audits and air analysis.
Service Tech Image 1

Visit The Compressed Air Blog!

Are you looking to learn more about the compressed air industry? Do you have pressing questions about compressed air and gas systems? Look no further!
compressed-air-blog
Close

Electric Power

Compressed Air Wiki Basic Theory Electricity

In order to turn air into compressed air, you need power. This power comes in the form of electricity. Here we will learn about the three types of electric power: active, reactive and apparent power. We will also take a look at the power factor.

What is active, reactive and apparent power?

a visual graphic of electrical power
Active power P (in Watts) is the useful power that can be used for work. A Watt-meter only measures the current component that is in phase with the voltage. This is the current flowing through the resistance in the circuit. Reactive power Q (V.Ar) is the "useless" power or "out-of-phase" or "phantom" power and cannot be used for work. However, it is useful for providing the magnetizing field necessary for the motor. Apparent power S (V.A) is the power that must be consumed from the mains supply to gain access to active power.
Formula active, reactive and apparent power
It includes the active and reactive power and any heat losses from the electric distribution system.

The relationship between active, reactive and apparent power is usually illustrated by a power triangle.

The active power for three-phase star and delta configurations is, Formula (P, Q, S)
The active power for three-phase star and delta configurations is:

What is the Power Factor?

The phase angle expresses the degree to which current and voltage are out of phase. A quantity known as the Power Factor (PF) is equal to cos φ. Many power utilities apply a penalty to their consumers for applications with a low, lagging Power Factor. This is because the electric distribution, transmission and generating equipment must be substantially oversized to accommodate the apparent power (sum of active and reactive power and of heat losses), while consumers are billed based on kWh (kilowatt hour) consumption registering active power only. Power Factor improvements often result in substantial cost savings. The PF can be improved by reducing the reactive power by:

  • Using high PF equipment: lighting ballasts
  • Using synchronous motors operated at leading PF at constant load
  • Using PF improvement capacitors

Related articles